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Abstract—Adding noise or fault during training has been a
method to attain a neural network with better generalization.
Yet, it is still unclear why it works. Some scholars have confsed
that the learning objective of adding noise or fault during the
gradient descent learning is the desired measure — the exped
mean square error (MSE) of the model with such noise or
fault. Subsequently, the desired measure is used to interpt
the regularization effect of noise injection. The purpose bthis
paper, together with an companion paper [1] is to clarify this
misconception. It is shown that their equivalency depends ro
three factors: (i) the model of the neural network, (ii) the noise or
fault model and (iii) the learning algorithm. They are equivalent
if random weight fault is injected during gradient descent
learning applying on either a MLP or RBF. If additive (resp.
multiplicative) node noise is injected during gradient desent
learning, the objective might not be the desired measure.

Index Terms—Additive Node Noise, Multiplicative Node Noise,
Regularization, Weight Fault.

I. INTRODUCTION

Noise or fault injection is a classical method to improv:
the generalization of a neural network [2]-[7]. Various r
searches were then conducted to investigate the effectcbf s
noise/fault on the performance of a neural network [8]-[11 |
Learning algorithms were developed to synthesize a neu

network that is able to tolerate such noise/fault [12]-[T4ie
convergence properties, the learning objective functiand

e_

[11], [15], [16]. The objective function of training with put
noise is given byL(w) = V(w) + S Y, 2V which
is equivalent to the expected MSE(w) = E[V(w)[D] =
V(w)+5 3, £ Furthermore, same conclusion is made
for the case of additive weight noise [9], [21].

These equivalency results suggest that noise injectiotd cou
be a cheap trick for implementing regularization. Suppbse t
noise varianceS; is known, minimizing 7 (w) by gradient
descent, one needs to solve the following recursive equatio

S~ 0 9°V(w) }

oV (w)
ow

W(f') = W(f' 1) Mt { B i ow ax%

Clearly, the computation of the last term is far more expensi
than adding input noise during training. In sequel, redean
started to confuse that the equivalency property could be
applied to other noise models, [32, Section 7.5] and [33,
Section 7.4.3]. Noise injection is a computationally cheap
frick for minimizing 7 (w). On the contrary, the regularization
effect of noise injection, like multiplicative Gaussian d&o
oise [29], could be interpreted frogi(w). In fact, it is not
\vays true. Whethef (w) = 7 (w) depends on three factors:
fﬁ‘ the model of neural network, (ii) the noise or fault model
and (iii) the learning algorithm, as depicted in Table I.

the regularization effects of applying gradient desceatriing B, Goal of the Paper
to train a FNN with such noise/fault were analyzed [15]-[24]

. d . The goal of this paper and the companion paper [1] is to
Recently, these ideas have be re-advocated in deep learnjng . L . . ,
Random node fault (i.e. dropout) [25]-[28], multiplicaiv clgnfy this misconception. Apart from the works depicted i

node noise [27], [29], gradient noise [30] or input noise][31

added during training a convolutionary neural network (C)Nl\l’?

or deep neural network (DNN).

A. Misconception

Table |, additional results on injecting random weight faul
dditive node noise or multiplicative node noise are presgen

he desire measures of the model with such fault or noise
are derived and the objective functions of these faultéois
injection training are derived. Empirical evidences onribee
noise injection are presented in [1].

As mentioned in [21], there is a common misconception

on the regularization effect of noise injection. It is cosdd
that the objective function being minimized by noise injeoct

based training (denoted @$w)) is equivalent to the expected
MSE of the model with the same type of noise (denot

as J(w)), i.e. L(w) = J(w). Accordingly, 7(w) is used
to interpret the regularization effect of noise injectioased

training [29], [32], [33]. This misconception could be du
to the early analytical works on noise injection [8], [9],
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Il. TRAINING WITH NOISE ORFAULT INJECTION

For a network withZ hidden layers and one output layer,
the network could be defined as followsf := h(z%, wl),

& —h(z~!, w!) andz! = h(x,w!) forl =2, -, L, where

z! and w! are respectively the node vector and the weight
matrix of the[!" hidden layerz' = h(x,w!) The transfer

Function h(-) is a nonlinear function.

Consider one output node, we could |&tx,z, w) be the
model, wherex € R™ is the input vectorz € R® is the
hidden node vector angr € R"™ is the weight vector, i.ez =



TABLE |
L(w) VERSUST (W)

Noise/Fault NN Model Learningl Equivalency Ref.

Input Noise MLP GD Lw)=J(w) [ [2], [8], [9], [11], [15]
Random Weight Fault MLP GD | L(w)=J(w) This paper
Additive Weight Noise MLP GD L(w) =T (w) [9], [19], [21], [22]

Multiplicative Weight Noise MLP GD L(w) # T (w) [19], [21], [22]
Random Node Fault MLP GD | L(w)=J(w) [20]
Additive Node Noise MLP GD L(w) # T(w) This paper

Multiplicative Node Noise MLP GD L(w) # T (w) [24], this paper

Input Noise RBF GD Lw)=T(w) [18]
Random Weight Fault RBF GD | L(w)=J(w) This paper
Additive Weight Noise RBF GD L(w)=T(w) [18]

Multiplicative Weight Noise RBF GD L(w) # T (w) [18]
Random Node Fault RBF GD | L(w)=JT(w) [17], [34]
Additive Node Noise RBF GD L(w)=T(w) This paper

Multiplicative Node Noise RBF GD | L(w)=J(w) This paper

Additive Weight Noise BM BL L(w) =T (w) [23]

MLP: Multifayer perceptron; RBF: Radial basis function wetk
BM: Boltzmann machine; GD: Gradient descent; BL: Boltzmagarning

(z-,-- ,2z') andw = (wl,--- ,w'). Thus,z is a function  I1ll. DESIREDMEASURES ANDLEARNING OBJECTIVES

of x andw, i.e.z(x, w). For clarification, we let7,(-) (wherex = {W, A, M}) be
the desired measures of the model with weight fault, adslitiv

A. Gradient Descent Learning node noise and multiplicative node noise. Their correspand

. learning objectives are denoted &s(-). The desired measure
Given a set ofN samplesD = {x,yi}r,, the perfor- g defined as follows

mance measure of the model is given by L
L J(w) =E[V(z,w)] =+ > Elh(z(xk,w), W) (5)
1% ==Sv 1 o = N
(2, w) N ]; (2 (x5, W), W), @) The expectation is taken over the probability spacebpf
- The desired model could thus be obtained by the following
where ¢y (z(xy, w),w) is the measure of the network onalgorithm :

the k' sample. Then, the gradient descent (GD) learning is OE|t;]
defined as follows : w(t) =wlt—1) - pm—p = (6)
On the other hand, the model obtained either by (3) or (4)
2 t—1 t—1
w(t)=w(t—1)— uta £(2(xs, W v ), w( )), (2) could be analyzed by the expected weight update, i.e.
0l
where p; is the step size. The sample;, y:} is randomly Ew)w(t =1 =w(t =1) = mE [a_w] : @)

picked fromD. If OE[¢:]/0w = E[0¢;/0w], the learning objective is the

desired measure.
B. Learning with Weight Fault and Node Noise

A. Weight Fault
With weight fault, the learning (2) is replaced by the With weight fault, it can be shown thaty (w) = Jw (w)
following update. as the expected gradient vector in (3) is given by

wit) = w(t 1) -, LT DN gy {%] =3 % Py = o {Z&P(bw)} .
w bw bw

wherew = w ® by (® is the elementwise multiplication The last equality is due to the fact thay, are discrete random

operator) andbyy is a random binary vector. vector. As a result, the objective function of adding weight
With node noise, the learning (2) is replaced by the follow-fault during gradient descent learnidgy (w) is equivalent to
ing update. the desired measutgy (w). Let by = (a1, -+, o).
L (w) = TJw(w) =Y V(bw @w)P(bw), (8)

D4, (30x0, w(t — 1)), wit — 1))
ow ’

wi(t) = w(t—1)— (4) bw
where P(by) = TTI7_, p(1=)(1 — p)®i, p is the weight fault
z = z+by for additive noisez = z+z®by for multiplicative rate P(«; = 0). Unfortunately, there is no simple close form

noise andby is a mean zero Gaussian noise vector. for (8) in general, expect in some special cases.



B. Additive Node Noise IV. REGULARIZATION EFFECTS ONRBF

With additive node noise, it can be shown that the desired

o While the objective functions of the respective noiseffaul
measure is given by

injection training have been revealed, their regularoraf-

B B Sa 0%V (w) fects are still unclear. Here, we consider a special case tha
Ja(w) = E[V(w)] = V(w) 2 L 922 ©) " the model is RBF network, i.ef(x,w) = h(x)"w, where
/ h;(x) is a radial basis function. Moreovér,(w) is the MSE,
The update of weighty; is thus be given by e V(w) =451 (y— h(Xk)TW)Q.

3
i 7 iUz

With weight fault, the learning (3) could be re-written as
On the other hand, one can derive the expected update of f@ows :

as follows :
t)=w(t—1 —h(x)"W(t —1)) h(x;). (17
Bluws(t)wit — 1) wi(t) = w(t — 1) + e (30— h(x)"W(t ~ 1)) h(x). (17)
o 93 g The expected update is given by
= wilt—1) = Z — 0. (11)
awt 6
Elw(t)|w(t —1)]
Itis thus clear from (10) and (11) thats (w) # Ja(w) asz; = w(t—1)+p (y —h(x)"w(t — 1)) h(x)
and w; are not independent variables. One cannot claim that +utph(xt)h(xt)TW(t —1). (18)
the third order derivatives are the same. From (11, it coeld b
shown that the objective function is given by Therefore, the learning objective is given by
L i 12
alw) = ZZ/ aZQa dw (12) Lw(w) =V(w) —w’ <% ZH(xk)> w, (19)
k
Again, there is no simple close form for (12) expect in some
special cases. where H(x;) = h(xy)h(xx)T. The additional term plays a
o ) role as a de-regularizer. Recall théy, (w) = J(w). The
C. Multiplicative Node Noise equivalency applies to weight fault.
With multiplicative node noise, the desired measure isrgive
by , B. Additive Node Noise
Taa(w) = Viw) + 20320V (g
M o 9 £u7i 32]2 ) With additive node noise, it can be shown that the desired
J

measure is given by
The update of weightv; is thus be given by

ol S 0 93¢
wilt) = wilt = 1) = i {MZ + S g
J

Ta(w) =V (w)+ Saw’w. (20)
} On the contrary, the learning (4) could be re-written as

(14) follows :
Similar to additive node noise, the expected updatevpfs ~ .
given by w(t) =w(t—1)+ (yt —h(x)"w(t - 1)) h(x;), (21)
Elw;(t)[w(t —1)] whereh = h + b4. The expected update is given by
o 9 | Sar o, OO
= wit—1)— {6wi LD BEAC 5% 15) Elw(t)|w(t — 1)] )
J = w(t—1) 4 (y¢ — h(x:)" w(t — 1)) h(x)
It is clear that ;2-2;()22% # 22(t)5%4—. Therefore, —peSaw(t —1). (22)

Lar(w) # Juu(w). From (15), we can get that Thus, we can get the learning objective that

LS
Lar(w) = = Z Z / 52200, Qwi (16) La(w) = V(w) + SawTw. (23)

Again, there is no simple close form for (16) expect in som@ompare (20) and (23, it is clear th&{w = J(w). The
special cases. regularization effect is identical to the effect of weiglecay.



C. Multiplicative Node Noise [10]

With multiplicative node noise, it can be shown that the

desired measure is given by [11]
Sy [12]

Tn(w) = V(W) + = ; Z Pl wl. @4

On the contrary, the learning (4) is re-written as follows : [14]

wit) = wlt 1)+ (30— ) w(t 1)) Bx), (25) g

whereh = h + by; ® h. The expected update is given by [16]

Elw(t)|w(t —1)]
w(t = 1) + pe (e —h(xe) " w(t = 1)) h(x)
— S G(xe)w(t — 1),

[17]

(26) (18]

whereG(x;) a diagonal matrix with thé'" diagonal element

(G(xt));; = hi(x¢)%. Thus, the learning objective is given by[lg]

N
Ly (w) =V(w)+wl SWM ,; G(xi) | w. (27) (201

One one hand, it is clear thét,(w) = Ja(w). On the other
hand, the regularization effect is similar to weighted viatig [21)
decay.

V. CONCLUSIONS (22]

In this paper, a misconception on noise or fault injection
has been elucidated. By revealing the objective functidns B
the learning with weight fault and node noise injection,sit i
shown that the actual learning objecti@éw) might not be the [24]
same as the desired measuféw). Thus, the regularization[
effect of noise injection could not simply be interpretednfr

J(w). A lot more works have to be done in the future. [26]
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