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Abstract—Adding noise or fault during training has been a
method to attain a neural network with better generalization.
Yet, it is still unclear why it works. Some scholars have confused
that the learning objective of adding noise or fault during the
gradient descent learning is the desired measure – the expected
mean square error (MSE) of the model with such noise or
fault. Subsequently, the desired measure is used to interpret
the regularization effect of noise injection. The purpose of this
paper, together with an companion paper [1] is to clarify this
misconception. It is shown that their equivalency depends on
three factors: (i) the model of the neural network, (ii) the noise or
fault model and (iii) the learning algorithm. They are equivalent
if random weight fault is injected during gradient descent
learning applying on either a MLP or RBF. If additive (resp.
multiplicative) node noise is injected during gradient descent
learning, the objective might not be the desired measure.

Index Terms—Additive Node Noise, Multiplicative Node Noise,
Regularization, Weight Fault.

I. I NTRODUCTION

Noise or fault injection is a classical method to improve
the generalization of a neural network [2]–[7]. Various re-
searches were then conducted to investigate the effect of such
noise/fault on the performance of a neural network [8]–[11].
Learning algorithms were developed to synthesize a neural
network that is able to tolerate such noise/fault [12]–[14]. The
convergence properties, the learning objective functionsand
the regularization effects of applying gradient descent learning
to train a FNN with such noise/fault were analyzed [15]–[24].
Recently, these ideas have be re-advocated in deep learning.
Random node fault (i.e. dropout) [25]–[28], multiplicative
node noise [27], [29], gradient noise [30] or input noise [31] is
added during training a convolutionary neural network (CNN)
or deep neural network (DNN).

A. Misconception

As mentioned in [21], there is a common misconception
on the regularization effect of noise injection. It is confused
that the objective function being minimized by noise injection-
based training (denoted asL(w)) is equivalent to the expected
MSE of the model with the same type of noise (denoted
as J (w)), i.e. L(w) = J (w). Accordingly,J (w) is used
to interpret the regularization effect of noise injection-based
training [29], [32], [33]. This misconception could be due
to the early analytical works on noise injection [8], [9],
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[11], [15], [16]. The objective function of training with input
noise is given byL(w) = V (w) + SI
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, which
is equivalent to the expected MSEJ (w) = E[V (w)|D] =

V (w)+ SI
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. Furthermore, same conclusion is made
for the case of additive weight noise [9], [21].

These equivalency results suggest that noise injection could
be a cheap trick for implementing regularization. Suppose the
noise varianceSI is known, minimizingJ (w) by gradient
descent, one needs to solve the following recursive equation :

w(t) = w(t− 1)− µt

{
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Clearly, the computation of the last term is far more expensive
than adding input noise during training. In sequel, researchers
started to confuse that the equivalency property could be
applied to other noise models, [32, Section 7.5] and [33,
Section 7.4.3]. Noise injection is a computationally cheap
trick for minimizingJ (w). On the contrary, the regularization
effect of noise injection, like multiplicative Gaussian node
noise [29], could be interpreted fromJ (w). In fact, it is not
always true. WhetherL(w) = J (w) depends on three factors:
(i) the model of neural network, (ii) the noise or fault model
and (iii) the learning algorithm, as depicted in Table I.

B. Goal of the Paper

The goal of this paper and the companion paper [1] is to
clarify this misconception. Apart from the works depicted in
Table I, additional results on injecting random weight fault,
additive node noise or multiplicative node noise are presented.
The desire measures of the model with such fault or noise
are derived and the objective functions of these fault/noise
injection training are derived. Empirical evidences on thenode
noise injection are presented in [1].

II. T RAINING WITH NOISE ORFAULT INJECTION

For a network withL hidden layers and one output layer,
the network could be defined as follows :f = h(zL,wL),
z
l = h(zl−1,wl) andz1 = h(x,w1) for l = 2, · · · , L, where

z
l and w

l are respectively the node vector and the weight
matrix of the lth hidden layer.z1 = h(x,w1) The transfer
functionh(·) is a nonlinear function.

Consider one output node, we could letf(x, z,w) be the
model, wherex ∈ Rm is the input vector,z ∈ Rs is the
hidden node vector andw ∈ Rn is the weight vector, i.e.z =



TABLE I
L(w) VERSUSJ (w)

Noise/Fault NN Model Learning Equivalency Ref.
Input Noise MLP GD L(w) = J (w) [2], [8], [9], [11], [15]

Random Weight Fault MLP GD L(w) = J (w) This paper
Additive Weight Noise MLP GD L(w) = J (w) [9], [19], [21], [22]

Multiplicative Weight Noise MLP GD L(w) 6= J (w) [19], [21], [22]
Random Node Fault MLP GD L(w) = J (w) [20]
Additive Node Noise MLP GD L(w) 6= J (w) This paper

Multiplicative Node Noise MLP GD L(w) 6= J (w) [24], this paper
Input Noise RBF GD L(w) = J (w) [18]

Random Weight Fault RBF GD L(w) = J (w) This paper
Additive Weight Noise RBF GD L(w) = J (w) [18]

Multiplicative Weight Noise RBF GD L(w) 6= J (w) [18]
Random Node Fault RBF GD L(w) = J (w) [17], [34]
Additive Node Noise RBF GD L(w) = J (w) This paper

Multiplicative Node Noise RBF GD L(w) = J (w) This paper
Additive Weight Noise BM BL L(w) = J (w) [23]

MLP: Multilayer perceptron; RBF: Radial basis function network
BM: Boltzmann machine; GD: Gradient descent; BL: Boltzmannlearning

(

z
L, · · · , z1

)

andw =
(

w
L, · · · ,w1

)

. Thus,z is a function
of x andw, i.e. z(x,w).

A. Gradient Descent Learning

Given a set ofN samplesD = {xk, yk}
N
k=1, the perfor-

mance measure of the model is given by

V (z,w) =
1

N

N
∑

k=1

ℓk(z(xk,w),w), (1)

where ℓk(z(xk,w),w) is the measure of the network on
the kth sample. Then, the gradient descent (GD) learning is
defined as follows :

w(t) = w(t− 1)− µt

∂ℓt(z(xt,w(t− 1)),w(t− 1))

∂w
, (2)

whereµt is the step size. The sample{xt, yt} is randomly
picked fromD.

B. Learning with Weight Fault and Node Noise

With weight fault, the learning (2) is replaced by the
following update.

w(t) = w(t− 1)− µt

∂ℓt(z(xt, w̃(t− 1)), w̃(t− 1))

∂w
, (3)

where w̃ = w ⊗ bW (⊗ is the elementwise multiplication
operator) andbW is a random binary vector.

With node noise, the learning (2) is replaced by the follow-
ing update.

w(t) = w(t− 1)− µt

∂ℓt(z̃(xt,w(t− 1)),w(t− 1))

∂w
, (4)

z̃ = z+bN for additive noise,̃z = z+z⊗bN for multiplicative
noise andbN is a mean zero Gaussian noise vector.

III. D ESIREDMEASURES ANDLEARNING OBJECTIVES

For clarification, we letJ⋆(·) (where⋆ = {W,A,M}) be
the desired measures of the model with weight fault, additive
node noise and multiplicative node noise. Their corresponding
learning objectives are denoted asL⋆(·). The desired measure
is defined as follows :

J (w) = E [V (z,w)] =
1

N

N
∑

k=1

E [ℓk(z(xk,w),w)] . (5)

The expectation is taken over the probability space ofb⋆.
The desired model could thus be obtained by the following
algorithm :

w(t) = w(t− 1)− µt

∂E[ℓt]

∂w
. (6)

On the other hand, the model obtained either by (3) or (4)
could be analyzed by the expected weight update, i.e.

E[w(t)|w(t − 1)] = w(t− 1)− µtE

[

∂ℓt
∂w

]

. (7)

If ∂E[ℓt]/∂w = E[∂ℓt/∂w], the learning objective is the
desired measure.

A. Weight Fault

With weight fault, it can be shown thatLW (w) = JW (w)
as the expected gradient vector in (3) is given by

E

[

∂ℓt
∂w

]

=
∑

bW

∂ℓt
∂w

P (bW ) =
∂

∂w

{

∑

bW

ℓtP (bW )

}

.

The last equality is due to the fact thatbW are discrete random
vector. As a result, the objective function of adding weight
fault during gradient descent learningLW (w) is equivalent to
the desired measureJW (w). Let bW = (α1, · · · , αn).

LW (w) = JW (w) =
∑

bW

V (bW ⊗w)P (bW ), (8)

whereP (bW ) = Πn
i=1p

(1−αi)(1− p)αi , p is the weight fault
rateP (αi = 0). Unfortunately, there is no simple close form
for (8) in general, expect in some special cases.



B. Additive Node Noise

With additive node noise, it can be shown that the desired
measure is given by

JA(w) = E[V (w)] = V (w) +
SA
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∂z2j
. (9)

The update of weightwi is thus be given by

wi(t) = wi(t− 1)− µt
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∂ℓt
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On the other hand, one can derive the expected update of (4)
as follows :

E[wi(t)|w(t − 1)]

= wi(t− 1)− µt
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It is thus clear from (10) and (11) thatLA(w) 6= JA(w) aszj
andwi are not independent variables. One cannot claim that
the third order derivatives are the same. From (11, it could be
shown that the objective function is given by

LA(w) = V (w) +
SA

2

∑

i

∑

j

∫

∂3V (w)

∂z2j∂wi

dwi. (12)

Again, there is no simple close form for (12) expect in some
special cases.

C. Multiplicative Node Noise

With multiplicative node noise, the desired measure is given
by

JM (w) = V (w) +
SM

2

∑

j
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∂z2j
. (13)

The update of weightwi is thus be given by

wi(t) = wi(t− 1)− µt


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(14)
Similar to additive node noise, the expected update ofwi is
given by

E[wi(t)|w(t − 1)]

= wi(t− 1)− µt


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∂ℓt
∂wi

+
SM
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It is clear that ∂
∂wi

zj(t)
2 ∂2ℓt
∂z2

j

6= z2j (t)
∂3ℓt

∂z2

j
∂wi

. Therefore,

LM (w) 6= JM (w). From (15), we can get that

LM (w) = V (w) +
SM

2

∑

i

∑

j

∫

z2j (t)
∂3ℓt

∂z2j∂wi

dwi. (16)

Again, there is no simple close form for (16) expect in some
special cases.

IV. REGULARIZATION EFFECTS ONRBF

While the objective functions of the respective noise/fault
injection training have been revealed, their regularization ef-
fects are still unclear. Here, we consider a special case that
the model is RBF network, i.e.f(x,w) = h(x)Tw, where
hi(x) is a radial basis function. Moreover,V (w) is the MSE,
i.e. V (w) = 1

N

∑n
k=1

(

yk − h(xk)
T
w
)2

.

A. Weight Fault

With weight fault, the learning (3) could be re-written as
follows :

w(t) = w(t− 1) + µt

(

yt − h(xt)
T
w̃(t− 1)

)

h(xt). (17)

The expected update is given by

E[w(t)|w(t − 1)]

= w(t− 1) + µt

(

yt − h(xt)
T
w(t− 1)

)

h(xt)

+µtph(xt)h(xt)
T
w(t− 1). (18)

Therefore, the learning objective is given by

LW (w) = V (w)−w
T

(

p

N

∑

k

H(xk)

)

w, (19)

whereH(xk) = h(xk)h(xk)
T . The additional term plays a

role as a de-regularizer. Recall thatLW (w) = J (w). The
equivalency applies to weight fault.

B. Additive Node Noise

With additive node noise, it can be shown that the desired
measure is given by

JA(w) = V (w) + SAw
T
w. (20)

On the contrary, the learning (4) could be re-written as
follows :

w(t) = w(t− 1) + µt

(

yt − h̃(xt)
T
w(t− 1)

)

h̃(xt), (21)

whereh̃ = h+ bA. The expected update is given by

E[w(t)|w(t − 1)]

= w(t− 1) + µt

(

yt − h(xt)
T
w(t− 1)

)

h(xt)

−µtSAw(t− 1). (22)

Thus, we can get the learning objective that

LA(w) = V (w) + SAw
T
w. (23)

Compare (20) and (23, it is clear thatL(w = J (w). The
regularization effect is identical to the effect of weight decay.



C. Multiplicative Node Noise

With multiplicative node noise, it can be shown that the
desired measure is given by

JM (w) = V (w) +
SM

N

N
∑

k=1

∑

i

hi(xk)
2w2

i . (24)

On the contrary, the learning (4) is re-written as follows :

w(t) = w(t− 1) + µt

(

yt − h̃(xt)
T
w(t− 1)

)

h̃(xt), (25)

whereh̃ = h+ bM ⊗ h. The expected update is given by

E[w(t)|w(t − 1)]

= w(t− 1) + µt

(

yt − h(xt)
T
w(t− 1)

)

h(xt)

−µtSMG(xt)w(t− 1), (26)

whereG(xt) a diagonal matrix with theith diagonal element
(G(xt))ii = hi(xt)

2. Thus, the learning objective is given by

LM (w) = V (w) +w
T

(

SM

N

N
∑

k=1

G(xk)

)

w. (27)

One one hand, it is clear thatLM (w) = JM (w). On the other
hand, the regularization effect is similar to weighted weight
decay.

V. CONCLUSIONS

In this paper, a misconception on noise or fault injection
has been elucidated. By revealing the objective functions of
the learning with weight fault and node noise injection, it is
shown that the actual learning objectiveL(w) might not be the
same as the desired measureJ (w). Thus, the regularization
effect of noise injection could not simply be interpreted from
J (w). A lot more works have to be done in the future.
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