Misconception on the Regularization Effect of
Noise or Fault Injection : Empirical Evidence

John Sum
Institute of Technology Management, National Chung HsimgvEisity
Taichung 40227, Taiwafipfsum@nchu.edu.tjv

Abstract—Over decades, there is a misconception that the it was shown in [8], [9], [11], [18] that the objective funati
learning objective of adding noise or fault during the gradient of training with input noise is given by(w) = V(w) +

descent learning is equivalent the desired measure — the exted g 22V (w) . .
mean square error (MSE) of the model with such noise or DY 922 ,Whe.reV(w). is the MSE of a.n0|se—free model.
fault. Subsequently, the desired measure is used to interpt The second term is the Tikhonov regularizer [18]. Happen to

the regularization effect of noise injection. The purpose bthis be, by taking expectation df (w) over the probability space

paper, toget_ther I\;Vi_th 6;‘“ compa[rﬂotnh ptaper_[lllx is t0b0|tafify ﬂrit: of the input noise, the desired measure is givenfiyw) =
misconception. It is shown in at equivalency between 2

learning (F))bjective and the desire mea(lure depyends on threeE[V(Wm)] = V(W)"'% Zz : g/x(fVV)' Hence,L(w) = J(w).
factor : (i) the model of the neural network, (ii) the noise or The objective function of adding input noise during gradlien
fault being injected and (jii) the learning algorithm. This paper descent learning is equivalent to the expected MSE of the
presents empirical evidence on two node noise injection ding  model| with input noise. Furthermore, the same conclusion is
training, one for additive noise and the other for multiplicative made for the case of additive weight noise [9], [26].

noise, to supplement the theoretical analyses presented|[f). It is h val I for i . d th
found that adding additive (resp. multiplicative) during gradient These two equivalency results, one for input noise and the

descent learning is not minimizing the desired measure. other for additive weight noise, suggest that noise injecti
Index Terms—Additive Node Noise, Multiplicative Node Noise, could be a cheap trick for implementing regularization. Sup
Regularization, Weight Fault. pose the noise variancg; is known, minimizing.7 (w) by
gradient descent, one needs to solve the following reaersiv

I. INTRODUCTION i
equation :

Noise or fault injection is a classical method to improve

the generalization of a neural network [2]-[7]. Various ") = w(t—1)— IV(w)  Sr~ 0 PV(w)
searches were then conducted to investigate the effectcf su MY " ow 2 &~ 0w Oa} '
noise/fault on the performance of a neural network [8]-{11 learlv. the computation of the last term is far more expansi
Learning algorithms were developed to synthesize a neutﬁaFn a{ﬁdin o Lrl)tnoise during trainin pan
network that is able tp tolerate such nOiSGT/fal.Jlt [12]_[].1716 In sequelg regearchers startgd to con?fﬁse that the equiyale
convergence proper'ues, the Iear_nmg obj_ectlve functla_nmd property co’uld be applied to other noise models, [37, Sec-
the re_gular|zat|or_1 effects of fapplylng gradient desceatrling ion 7.5] and [38, Section 7.4.3]. Noise injection is'a co'mpu
to train a FNN with such noise/fault were analyzed [18]-[29 ﬁ ionélly cheap {rick for mir.1ir.niz.in97(w) On the contrary
Recently, these ideas have be re-advocated in deep learn é o L A L

. N regularization effect of noise injection, like multgaltive
Random node fault (i.e. dropout) [30]—-[33], multiplicativ Gaussgiian node noise [34], could lie interpreted fr,g;"zw)
node noise [32], [34], gradient noise [35] or input noise][36 ' y

added during training a convolutionary neural network (C)Nl\|n fﬁ]Ct’ 'tf'S rt10t ?IW'?;]S true(.j Vlvhfthe}(“ll) :tj(‘:) qetp;]e_nds
or deep neural network (DNN). on three factors: (i) the model of neural network, (ii) theéseo

or fault model and (iii) the learning algorithm, as depicted
A. Misconception Table I.

As mentioned in [26], there is a common misconceptiol Goal of the Paper
on the regularization effect of noise injection. It is cosdd
that the objective function being minimized by noise injeoct
based training (denoted @gw)) is equivalent to the expected
MSE of the model with the same type of noise (denot
as J(w)), i.e. L(w) = J(w). Accordingly, 7(w) is used
to interpret the regularization effect of noise injectioased
training [34], [37], [38]. 1. NODE NOISEINJECTION[1]

This misconception could be due to early analytical works Here, we summarize the theoretical results on node noise
on noise injection training. For the case of adding inpusepi jnjection. Reader could refer to [1] for detail derivation.

The work is supported in part by grants from Taiwan MOST 1@aze- ~ FOr @ neural network with inpuk, L hidden layers and
005-065-MY2 and 108-2221-E-005-036. one output layer, the output of the network could be defined

The only goal of this paper and the companion paper [1] is
to clarify this misconception. This paper presents emairic
ed/idence on two node noise injection during training, one
efor additive noise and the other for multiplicative noise, t
supplement the theoretical analyses presented in [1].



TABLE |
L(w) VERSUST (W)

Noise/Fault NN Model Learningl Equivalency Ref.

Input Noise MLP GD Lw)=J(w) | [2], [8], [9], [11], [18]
Random Weight Fault MLP GD | L(w)=JT(w) 1
Additive Weight Noise MLP GD L(w) =T (w) [9], [24], [26], [27]

Multiplicative Weight Noise MLP GD L(w) # T (w) [24], [26], [27]
Random Node Fault MLP GD | L(w)=T(w) [25]
Additive Node Noise MLP GD L(w) # T(w) [1]

Multiplicative Node Noise MLP GD L(w) # T (w) [1], [29]

Input Noise RBF GD Lw)=T(w) [23]
Random Weight Fault RBF GD | L(w) =J(w) [1]
Additive Weight Noise RBF GD L(w)=T(w) [23]

Multiplicative Weight Noise RBF GD L(w) # T (w) [23]
Random Node Fault RBF GD | L(w)=JT(w) [20], [21]
Additive Node Noise RBF GD L(w)=T(w) [1]

Multiplicative Node Noise RBF GD | L(w)=J(w) [1]

Additive Weight Noise BM BL L(w) =T (w) [28]

MLP: Multifayer perceptron; RBF: Radial basis function wetk
BM: Boltzmann machine; GD: Gradient descent; BL: Boltzmagarning

as follows :f = h(z",w?%), z = h(z/~!,w!) andz' = Unfortunately, there is no simple close form for (7) expect
h(x,w!) for I = 2,--- | L, wherez! andw' are respectively in some special cases. Thus, it is not easy to interpret the
the node vector and the weight vector of e hidden layer. regularization effect multiplicative node noise injectio
Besides,z! = h(x,w!) The element of the vector function

h(-) is nonlinear transfer function. Without loss of generalityB- Multiplicative Node Noise

we consider that there is one output node. Then, for sintplici  With multiplicative node noise, the desired measure ismive
we let f(x,z,w) be the model, wher& € R™ is the input by

vector,z € R® is the hidden node vector and € R" is the

weight vector, i.ez = (z%, -+ ,z') andw = (z%,--- ,z'). Tu(w) = V(w) + Su ZZ?(XhW)aQL(QW) (6)
Thus,z is a function ofx andw, i.e. z(x, w). 2N kg ’ 9z;
Given a set ofN samplesD = {xj,yx}+_,, the perfor- L ) ’ . ) L
mance measure is defined as follows : and the objective function of the learning with noise ingett
is given by
1

V(Z,W) = N ;Ek(Z(Xk,W),W), (1) ﬁl\/l(w) _ V(W)
where /. (z(x;, w), w) is the measure of the network on the + ZZ/ (X, W 8 ek{; ) w;. (7)
k" sample. The desired measure is defined as follows : i

Again, there is no simple close form for (7) expect in some
J(w)=EV(zw)] =+ > Elt(a(xk,w),w)]. (2) special cases. Thus, it is not easy to interpret the regatiai
effect multiplicative node noise injection.
The expectation is taken over the spacéaqfor by,.
With node noise, the weight update is given by I1l. EMPIRICAL EVIDENCE

B Oy (z(xe, w(t — 1)), w(t — 1)) From (4), (5), (6) and (7), it is clear that, (w) # Ja(w)
w(t) = w(t—1) — , ® : /A W)
ow and Ly (w) # Ju(w). Equivalently,w, # w. To investi-
z = z+b 4 for additive noisez = z+z®b, for multiplicative gate this issue empirically, two methods could be applide: T
noise. Bothb 4 andb,, are mean zero Gaussian noise vectorirst one is exhaustive search. However, it is not suitabte fo
A Additive Node Noise large scale network, like deep neural network. We rely on the

second method — applying learning curve.
With additive node noise, it can be shown that the desire PPINg 9

measure is given by A. Method: Use of Learning Curve

S 0%V (w i i i itti
Ta(w) = B[V(w)] = V(w) + 24 (2 ) (4) Leamning curve s used toillustrate the problem of overiiti
2 7 0z; [37], [39], [40]. In the course of learning, the testing MSE
— . : . ... first decreases together with the training MSE. After some
;‘asndi\:Zﬁ gbjectwe function of the learning with noise inett epoches, the testing MSE starts to increase while the tigini
9 y MSE keeps on decreasing until the training is complete.

La(w) = L Sa Z Z/ d w,. (5) Here, weuse the training MSE to identifyfi(w) = 7 (w),
0z; 3w as J(w) is essentially the training MSE. These data can




easily be collected during training. Using learning cuthece D. Results

situations will be observed. The result on additive node noise (resp. multiplicativeaod

« Case 1:L(w) = J(w). In this case, the trained modelnoise) is shown in Figure 2(a) (resp. Figure 2(b)). For both
w, is exactly the same as the desired model, cases, the training MSE first decreases and then after rertai
as shown in Figure 1(a). Thus, it is anticipated thapoch (around 500 for the case of additive noise and around
w moves along the path as shown in the figure argbo for the case of multiplicative noise), the training MSE
eventually reaches the location;. The learning curve increases. The outcome is exactly the same as what we have
is a decreasing curve. anticipated, see Figure 1(b). Thus, we can conclude that

» Case 2L(w) # J(w). In this case, the trained model isthe objective function of adding node noise during gradient
not the same as the desired model. The trained medel descent learning is not the desired measure.
could be located further away from the origin, as shown
in Figure 1(b), or located closer to origin Figure 1(c). IV. CONCLUSIONS

— Case 2(i): For the former case first moves towards |, g paper and the companion paper [1], it has been clar-
w. Then, it moves away fromv; and eventually jseq a misconception on the the regularization effect ofgoi
arrivesw . So, the learning curve first decreases anfljection. The objective function of adding node noise dgri
then increases after certain epoches. gradient descent learning(w) is not the desire measure of the
— Case 2(ii): For the latter casey will not pass pgqe|with such noise/(w). Thus, the regularization effect of
throughw.7. So, the learning curve is a decreasing,iqe injection could not simply be interpreted frafifw). In
curve as shown in the panel of Figure 1(c). sequel, training with noise might not able to generate aenois
If the learning curve exhibits the shape like Case 2(i), Ww@bust model. It is better said that gradient descent lagrni
can thus conclude that(w) # J(w). If the learning curve might not be able to train a neural network to the desired
exhibits the shape like Case 1 or Case 2(ii), no conclusion a@odel if noise exists. The works presented in this paper and

be made. in [1], [27]-[29] are still preliminary. A lot more works hav
to be done in the future. One problem is to search or develop
B. Data a learning algorithm that is able to train a neural network to

To validate the theoretical results obtained in the previoth® desired model even if noise exists.
section, the MNIST handwritten digit dataset was down-
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Fig. 1. The learning curves (training MSE curves) of threffedént situations.
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Fig. 2. Simulation results on training a MLP (784-100-1@)-With node
noise to fit the MNIST dataset.
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