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Abstract—Over decades, there is a misconception that the
learning objective of adding noise or fault during the gradient
descent learning is equivalent the desired measure – the expected
mean square error (MSE) of the model with such noise or
fault. Subsequently, the desired measure is used to interpret
the regularization effect of noise injection. The purpose of this
paper, together with an companion paper [1], is to clarify this
misconception. It is shown in [1] that equivalency between the
learning objective and the desire measure depends on three
factor : (i) the model of the neural network, (ii) the noise or
fault being injected and (iii) the learning algorithm. This paper
presents empirical evidence on two node noise injection during
training, one for additive noise and the other for multiplicative
noise, to supplement the theoretical analyses presented in[1]. It is
found that adding additive (resp. multiplicative) during gradient
descent learning is not minimizing the desired measure.

Index Terms—Additive Node Noise, Multiplicative Node Noise,
Regularization, Weight Fault.

I. I NTRODUCTION

Noise or fault injection is a classical method to improve
the generalization of a neural network [2]–[7]. Various re-
searches were then conducted to investigate the effect of such
noise/fault on the performance of a neural network [8]–[11].
Learning algorithms were developed to synthesize a neural
network that is able to tolerate such noise/fault [12]–[17]. The
convergence properties, the learning objective functionsand
the regularization effects of applying gradient descent learning
to train a FNN with such noise/fault were analyzed [18]–[29].
Recently, these ideas have be re-advocated in deep learning.
Random node fault (i.e. dropout) [30]–[33], multiplicative
node noise [32], [34], gradient noise [35] or input noise [36] is
added during training a convolutionary neural network (CNN)
or deep neural network (DNN).

A. Misconception

As mentioned in [26], there is a common misconception
on the regularization effect of noise injection. It is confused
that the objective function being minimized by noise injection-
based training (denoted asL(w)) is equivalent to the expected
MSE of the model with the same type of noise (denoted
as J (w)), i.e. L(w) = J (w). Accordingly,J (w) is used
to interpret the regularization effect of noise injection-based
training [34], [37], [38].

This misconception could be due to early analytical works
on noise injection training. For the case of adding input noise,
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it was shown in [8], [9], [11], [18] that the objective function
of training with input noise is given byL(w) = V (w) +
SI
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, whereV (w) is the MSE of a noise-free model.
The second term is the Tikhonov regularizer [18]. Happen to
be, by taking expectation ofV (w) over the probability space
of the input noise, the desired measure is given byJ (w) =

E[V (w)|D] = V (w)+SI
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. Hence,L(w) = J (w).
The objective function of adding input noise during gradient
descent learning is equivalent to the expected MSE of the
model with input noise. Furthermore, the same conclusion is
made for the case of additive weight noise [9], [26].

These two equivalency results, one for input noise and the
other for additive weight noise, suggest that noise injection
could be a cheap trick for implementing regularization. Sup-
pose the noise varianceSI is known, minimizingJ (w) by
gradient descent, one needs to solve the following recursive
equation :

w(t) = w(t− 1)− µt
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Clearly, the computation of the last term is far more expensive
than adding input noise during training.

In sequel, researchers started to confuse that the equivalency
property could be applied to other noise models, [37, Sec-
tion 7.5] and [38, Section 7.4.3]. Noise injection is a compu-
tationally cheap trick for minimizingJ (w). On the contrary,
the regularization effect of noise injection, like multiplicative
Gaussian node noise [34], could be interpreted fromJ (w).
In fact, it is not always true. WhetherL(w) = J (w) depends
on three factors: (i) the model of neural network, (ii) the noise
or fault model and (iii) the learning algorithm, as depictedin
Table I.

B. Goal of the Paper

The only goal of this paper and the companion paper [1] is
to clarify this misconception. This paper presents empirical
evidence on two node noise injection during training, one
for additive noise and the other for multiplicative noise, to
supplement the theoretical analyses presented in [1].

II. N ODE NOISE INJECTION [1]

Here, we summarize the theoretical results on node noise
injection. Reader could refer to [1] for detail derivation.

For a neural network with inputx, L hidden layers and
one output layer, the output of the network could be defined



TABLE I
L(w) VERSUSJ (w)

Noise/Fault NN Model Learning Equivalency Ref.
Input Noise MLP GD L(w) = J (w) [2], [8], [9], [11], [18]

Random Weight Fault MLP GD L(w) = J (w) [1]
Additive Weight Noise MLP GD L(w) = J (w) [9], [24], [26], [27]

Multiplicative Weight Noise MLP GD L(w) 6= J (w) [24], [26], [27]
Random Node Fault MLP GD L(w) = J (w) [25]
Additive Node Noise MLP GD L(w) 6= J (w) [1]

Multiplicative Node Noise MLP GD L(w) 6= J (w) [1], [29]
Input Noise RBF GD L(w) = J (w) [23]

Random Weight Fault RBF GD L(w) = J (w) [1]
Additive Weight Noise RBF GD L(w) = J (w) [23]

Multiplicative Weight Noise RBF GD L(w) 6= J (w) [23]
Random Node Fault RBF GD L(w) = J (w) [20], [21]
Additive Node Noise RBF GD L(w) = J (w) [1]

Multiplicative Node Noise RBF GD L(w) = J (w) [1]
Additive Weight Noise BM BL L(w) = J (w) [28]

MLP: Multilayer perceptron; RBF: Radial basis function network
BM: Boltzmann machine; GD: Gradient descent; BL: Boltzmannlearning

as follows : f = h(zL,wL), z
l = h(zl−1,wl) and z

1 =
h(x,w1) for l = 2, · · · , L, wherezl andwl are respectively
the node vector and the weight vector of thelth hidden layer.
Besides,z1 = h(x,w1) The element of the vector function
h(·) is nonlinear transfer function. Without loss of generality,
we consider that there is one output node. Then, for simplicity,
we let f(x, z,w) be the model, wherex ∈ Rm is the input
vector,z ∈ Rs is the hidden node vector andw ∈ Rn is the
weight vector, i.e.z =

(

z
L, · · · , z1

)

andw =
(

z
L, · · · , z1

)

.
Thus,z is a function ofx andw, i.e. z(x,w).

Given a set ofN samplesD = {xk, yk}
N
k=1, the perfor-

mance measure is defined as follows :

V (z,w) =
1

N

N
∑

k=1

ℓk(z(xk,w),w), (1)

whereℓk(z(xk,w),w) is the measure of the network on the
kth sample. The desired measure is defined as follows :

J (w) = E [V (z,w)] =
1

N

N
∑

k=1

E [ℓk(z(xk,w),w)] . (2)

The expectation is taken over the space ofbA or bM .
With node noise, the weight update is given by

w(t) = w(t− 1)− µt

∂ℓt(z̃(xt,w(t− 1)),w(t− 1))

∂w
, (3)

z̃ = z+bA for additive noise,̃z = z+z⊗bM for multiplicative
noise. BothbA andbM are mean zero Gaussian noise vectors.

A. Additive Node Noise

With additive node noise, it can be shown that the desired
measure is given by

JA(w) = E[V (w)] = V (w) +
SA
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and the objective function of the learning with noise injected
is given by

LA(w) = V (w) +
SA
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Unfortunately, there is no simple close form for (7) expect
in some special cases. Thus, it is not easy to interpret the
regularization effect multiplicative node noise injection.

B. Multiplicative Node Noise

With multiplicative node noise, the desired measure is given
by

JM (w) = V (w) +
SM

2N

∑

k,j

z2j (xk,w)
∂2ℓk(w)

∂z2j
(6)

and the objective function of the learning with noise injected
is given by

LM (w) = V (w)

+
SM

2N
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Again, there is no simple close form for (7) expect in some
special cases. Thus, it is not easy to interpret the regularization
effect multiplicative node noise injection.

III. E MPIRICAL EVIDENCE

From (4), (5), (6) and (7), it is clear thatLA(w) 6= JA(w)
andLM (w) 6= JM (w). Equivalently,wL 6= wJ . To investi-
gate this issue empirically, two methods could be applied. The
first one is exhaustive search. However, it is not suitable for
large scale network, like deep neural network. We rely on the
second method – applying learning curve.

A. Method: Use of Learning Curve

Learning curve is used to illustrate the problem of overfitting
[37], [39], [40]. In the course of learning, the testing MSE
first decreases together with the training MSE. After some
epoches, the testing MSE starts to increase while the training
MSE keeps on decreasing until the training is complete.

Here, we use the training MSE to identify ifL(w) = J (w),
as J (w) is essentially the training MSE. These data can



easily be collected during training. Using learning curve,three
situations will be observed.

• Case 1:L(w) = J (w). In this case, the trained model
wL is exactly the same as the desired modelwJ ,
as shown in Figure 1(a). Thus, it is anticipated that
w moves along the path as shown in the figure and
eventually reaches the locationwJ . The learning curve
is a decreasing curve.

• Case 2:L(w) 6= J (w). In this case, the trained model is
not the same as the desired model. The trained modelwL

could be located further away from the origin, as shown
in Figure 1(b), or located closer to origin Figure 1(c).

– Case 2(i): For the former case,w first moves towards
wJ . Then, it moves away fromwJ and eventually
arriveswL. So, the learning curve first decreases and
then increases after certain epoches.

– Case 2(ii): For the latter case,w will not pass
throughwJ . So, the learning curve is a decreasing
curve as shown in the panel of Figure 1(c).

If the learning curve exhibits the shape like Case 2(i), we
can thus conclude thatL(w) 6= J (w). If the learning curve
exhibits the shape like Case 1 or Case 2(ii), no conclusion can
be made.

B. Data

To validate the theoretical results obtained in the previous
section, the MNIST handwritten digit dataset was down-
loaded1. To convert the dataset in a form that the MATLAB is
able to load, two helper functions are used2. MNIST dataset
consists of ten classes of handwritten digits, from 0 to 9, inthe
form of images. Each digit image is of size28 × 28 pixels.
In the dataset, there are 60,000 training images and 10,000
testing images.

C. Network and Noise Models

A MLP of two hidden layers is examined. Each hidden
layer consists of 100 hidden nodes and 10 output nodes. For
simplicity, this structure is denoted as 784-100-100-10. This
model has 89,610 parameters, including weights and biases.
The transfer function of both the hidden nodes and the output
nodes is defined as a sigmoid function. Gradient descent is
applied and the step size is set to0.1.

In each step, node noise is injected. For the variance of
additive noise0.04 and the variance of multiplicative noise
is 0.25. A training sample is selected sequentially from the
training set. A testing sample is selected randomly from the
testing set. Then, the square error of the model on the training
sample and the square error of the model on the testing sample
are evaluated. Finally, the weights are updated by gradient
descent. After60, 000 steps (i.e. one epoch), the mean training
error and the mean testing error are calculated.

1From http://yann.lecun.com/exdb/mnist/.
2Downloaded from http://ufldl.stanford.edu/wiki/index.php/Using the

MNIST Dataset.

D. Results

The result on additive node noise (resp. multiplicative node
noise) is shown in Figure 2(a) (resp. Figure 2(b)). For both
cases, the training MSE first decreases and then after certain
epoch (around 500 for the case of additive noise and around
200 for the case of multiplicative noise), the training MSE
increases. The outcome is exactly the same as what we have
anticipated, see Figure 1(b). Thus, we can conclude that
the objective function of adding node noise during gradient
descent learning is not the desired measure.

IV. CONCLUSIONS

In this paper and the companion paper [1], it has been clar-
ified a misconception on the the regularization effect of noise
injection. The objective function of adding node noise during
gradient descent learningL(w) is not the desire measure of the
model with such noiseJ (w). Thus, the regularization effect of
noise injection could not simply be interpreted fromJ (w). In
sequel, training with noise might not able to generate a noise-
robust model. It is better said that gradient descent learning
might not be able to train a neural network to the desired
model if noise exists. The works presented in this paper and
in [1], [27]–[29] are still preliminary. A lot more works have
to be done in the future. One problem is to search or develop
a learning algorithm that is able to train a neural network to
the desired model even if noise exists.
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